Glass Industry 4.0: new technologies and developments

Changes out of the combination of physics and intelligent process control: thermal toughening as an example

Prof. Dr.-Ing. Heiko Hessenkemper

Düsseldorf, September 21, 2016
1. Presentation institute

2. Current technology status

3. Experiments, results and knowledge

4. New control value

6. Outlook
1. Presentation institute

TU Bergakademie Freiberg
Institute of ceramic, glass and construction material

• 1950 founded by Theodor Haase as Institute of Ceramic
• 1954 renaming in Institute of „Silikathüttenkunde“
• 1954 university lecture „Glashüttenkunde“ by Paul Beyersdorfer
• 1990 new formation as Institute of silicate technology
• 1995 the appointment of Dr.-Ing. Heiko Hessenkemper as professor of glass and enamel technology
• 2002 renaming in institute of ceramic, glass and construction materials
1. Presentation institute

Technology oriented industry-related research and consulting

Fields of activity
- Increasing durability of refractory material for glass melting facility
- Glass fibre reinforced materials
- Optimizing the glass melting process
- Surface treatment of glass
- New concepts for the thermal use solar energy
- Glass fibers
- Thermal and chemical toughening
- Foam glass

Spin-offs
- LubriGlass GmbH – Hall 12 / D03
 Surface Treatment Technology of Glass
- Ancorro GmbH - Hall 12 / C03
 Refractory and Melting Technologies
2. Current technology status

Industrial production of safety glass (facility example)

Influence variables

➢ Heating, temperature distribution
➢ Glass thickness, type of glass
➢ High use of energy because of insufficient measuring options

source: Tamglass; www.glaston.net
2. Current technology status

Schematic overview of the production process of safety glass

- Glass temperature (surface → linescan)
- Sampling control (destruction, fracture pattern DIN EN 12150-1)

Furnace temperature

Empirical management by sampling control

source: Glaströsch; www.glastroesch.ch
2. Current technology status

Glass properties

- Specification: DIN EN 12150-1; december 2015
 → First time regulation for 2 mm safety glass
- Increase the strength by compressive stress in the surface
- Fracture pattern caused by high tensile stress in the core
- Bending tensile strength minimum 120 MPa (DIN EN 1288-3:2000)
- Minimum count of fracture pattern [field (50±1) mm x (50±1) mm]

Extract from DIN EN 12150-1:2015

<table>
<thead>
<tr>
<th>Glasart</th>
<th>Nenndicke, d (mm)</th>
<th>Mindestanzahl an ausgezählten Bruchstücken</th>
<th>Mindestanzahl an ausgezählten Bruchstücken für Duschabtrennungen (siehe EN 14428)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle Glasarten</td>
<td>2</td>
<td>15</td>
<td>nicht anwendbar</td>
</tr>
<tr>
<td>Alle Glasarten</td>
<td>3</td>
<td>15</td>
<td>40</td>
</tr>
<tr>
<td>Alle Glasarten</td>
<td>4 bis 12</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Alle Glasarten</td>
<td>15 bis 25</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>
3. Experiments, results and knowledge

Measurement of glass – core temperature

Experimental setup

![Experimental setup image]

Graph

- **Tg**
- **T [°C]**
- **t [s]**
- **2 mm**
- **3 mm**
- **4 mm**

- **Measurement of glass – core temperature**
 - Temperature measurements at different times for glass samples of 2 mm, 3 mm, and 4 mm thickness.
3. Experiments, results and knowledge

Determination of the bending strength DIN EN 1288-5:2000

- 100 mm x 100 mm
- Thickness 1,85 mm
- Contact cooling

Strength [MPa]

- Float glass
- Safety glass
Measurement of stress - profile

Stress [MPa]

Glass thickness [mm]

-200 -150 -100 -50 0 50 100 150 200

0 0.5 1.0 1.5 2.0 2.5

Stress (contact cooling by IKGB)
Stress (air cooling by company)
3. Experiments, results and knowledge

Result of heating and the influence on the quality of thermal toughening

Measurement:
- Line scan directly after heating zone
- Direct relationship between homogeneous heating and fracture pattern

→ Important quality aspect

Real sample patterns for hand out.

Please return the samples after the presentation.
4. New control value

stress - temperature - time - correlation
in case of contact-cooling 2 mm soda-lime-glass

- stress - core (measured)
- stress - surface (measured)

* dilatometrically measured

temperature [°C]
stress [MPa]
time [s]

Tg
225 MPa
350 MPa
526°C - 557°C

stress - temperature - time - correlation
in case of contact-cooling 2 mm soda-lime-glass

- temperature - core (measured)
- temperature - surface (measured)

* dilatometrically measured
Schematic overview of the production process of safety glass

- **Glass temperature** (surface → linescan)

- **Sampling control** (destruction, fracture pattern DIN EN 12150-1)

- **Furnace temperature**

- **Empirical management by sampling control**

- **Loading** → **Heating** → **Cooling zone** → **Unloading**

source: Glaströsch; www.glastroesch.ch
4. New control value

Schematic overview of the production process of safety glass

Glass temperature (surface → linescan)

Sampling control (destruction, fracture pattern DIN EN 12150-1)

> 650 °C

Furnace temperature

Empirical management by sampling control

source: Glaströsch; www.glastroesch.ch
4. New control value

Schematic overview of the production process of safety glass

- Glass temperature (surface → linescan)
- Furnace temperature
- ΔT – measurement
 - Online cooling management
 - Quality assurance

Source: Glaströsch; www.glastroesch.ch
4. New control value

Key findings

ΔT as process variable
- Significant measurable value for process control
- Measurement adaptable to existing plants

Dependency of ΔT
- Thickness of glass
- Optical properties of glass (glass composition)
- Thermal conductivity of glass
- Cooling capacity
5. Outlook

Potential benefit

Essential shortening of process times
- By variation the cooling power
- Stop quenching after core temperature is lower than T_g
→ Saving energy and increasing throughput

Documentation for quality assurance
- Recording production data batch by batch
- Marking by individual silk screen
- Complete traceability

Further options
- Heating zone as bottle neck: new concepts
Thank you for your attention!